Derivative of Functions in Parametric Forms

IMPORTANT

Derivative of Functions in Parametric Forms: Overview

This Topic covers sub-topics such as Differentiation of Parametric Equations and Differentiation of a Function w.r.t. another Function

Important Questions on Derivative of Functions in Parametric Forms

HARD
IMPORTANT

Differentiate 1+x2+1-x21+x2-1-x2 w .r. t. 1-x4

MEDIUM
IMPORTANT

If   y= sin 1 x 1 x 2 ,  then 1x2d2ydx23xdydxy is equal to:

HARD
IMPORTANT

The length x of a rectangle is decreasing at the rate of   5cm/minute  and the width y is increasing at the rate of   4cm/minute  When   x=8cmandy=6cm,  the rate of change of (a) the perimeter, b the area of the rectangle would be:

MEDIUM
IMPORTANT

If  x=acost+tsint and  y=asinttcost, 0<t<π2. The value of   d2ydx2 would be:

EASY
IMPORTANT

Derivative of cot-1x1+cot-1x with respect to cot-1x is

MEDIUM
IMPORTANT

Differentiate tan-11-x21+x2 with respect to cos-1x2

MEDIUM
IMPORTANT

If x=sint, y=cos2t, then dydx will be

MEDIUM
IMPORTANT

If x=acos3t,y=asin3t, then value of dydx is

EASY
IMPORTANT

Find the derivative of logx with respect to tan-1x

MEDIUM
IMPORTANT

If ex+ey=ex+y, then value of dy dx=-ey-x is

EASY
IMPORTANT

If x=2at2, y=at4, and dydx=tn then find the value of n.

HARD
IMPORTANT

Find dydx, if x=2cost+cos2t, y=2sint-sin2t at t=π4

HARD
IMPORTANT

Differentiate cosxsinx w.r.t. sinxcosx

MEDIUM
IMPORTANT

Differentiate cos-1sinx w.r.t. tan-1x

HARD
IMPORTANT

Differentiate tan-1a-x1+ax w.r.t  sin-13x-4x3

HARD
IMPORTANT

Differentiate tan-1x1-x2 w.r.t.sec-112x2-1

MEDIUM
IMPORTANT

Differentiate u w.r.t. v where u=e2xcosx and v=e2xsinx

HARD
IMPORTANT

Find dydx, if x=θ-sinθ , y=1-cosθ, at θ=π2